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Chapter 1

Introduction

1.1 Background

Fracture mechanics is an extremely important area in the field of solid mechanics. Fracture

mechanics concerns itself with the creation, propagation, and evolution of cracks in materials.

It is an significant field due to the importance fracture of materials plays in many areas. In

many settings, knowing how to detect and mitigate failure of materials (i.e. fracturing) can

be the difference between no loss of life and hundreds of lives lost, the difference between

predictable (and therefore manageable) failure and unpredictable and catastrophic failure.

The fracture mechanics of homogeneous materials is well understood. There has been a great

amount of work put in to understanding, both theoretically and practically, the mechanics

behind both initial fracturing as well as how the crack propagates through the material. A

general theory to deal with any kind of homogeneous material has been fairly well established,

leading to all of the advances in obtaining desired material properties that we see today.

Homogeneous materials, however, can only get us so far. The future advances in material

properties will come from heterogeneous materials. However, there is an issue: unlike with

homogeneous materials, there is no one unifying theory describing all heterogeneous materi-
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als. It is therefore difficult to design a material with specific properties in mind without first

having a generalized model of all such materials with modifiable parameters. This is exactly

why homogeneous materials have been so successful in this arena. In addition, it would

be great to be able to model any heterogeneous material. It would increase our knowledge

about the world and possibly open up new avenues for exploration.

Moreover, even supposed homogeneous materials are not truly homogeneous — there are

always cracks, bumps, dents, and other deformities. For example, it is easier to rip paper or

cardboard in one direction than in the other due to the way the fibers are aligned. Addi-

tionally, heterogeneity is built-in to the microstructure of many materials, such as metallic

and ceramic materials. Thus, studying the fracture mechanics of macroscopically heteroge-

neous materials will also benefit the modeling of many common-place materials which are

homogeneous at our length scales, but heterogeneous at smaller length scales.

1.2 Objectives

In order to study the fracture mechanics of heterogeneous materials as an avenue for at-

tempting to characterize heterogeneous materials, it is useful to utilize alternative measures

which are easier to measure while providing an understanding of the underlying phenomena.

The behavior of heterogeneous materials under peeling action will be explored as a proxy

for understanding fracture mechanics.

The first objective is to perform a peeling experiment to investigate how different patterns on

a substrate affect adhesion. Several different patterns will be tested and the force required

to peel the tape off at constant velocity will be measured. I will attempt to mathemati-

cally model the results from that experiment as well as design further experiments to test

hypotheses about phenomena that may arise.

The second objective is to computationally model the peel front during the peeling process
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to track how it changes. This will thus give an idea of how the heterogeneities affect the peel

front.

1.3 Thin-Film Peeling

Front propagation problems are of paramount importance in areas such as phase boundaries

[1, 2, 3] and crack propagation [4, 5]. As the underlying mathematics of front propagation

problems is similar to that of thin-film peeling, the latter can be used as a model system for

the former.

This problem was first explored analytically by Rivlin (1944) [6]. The thin-film peeling

problem is often modeled as either a membrane or Euler-Bernoulli beam. The peeling angle

is held constant and the resulting peel front examined.

Most of the following is taken from [8]. In order to derive the theoretical foundation for the

analytical part of this research, it is necessary to start with Kirchoff finite deformation theory.

One then makes a Kirchoff-Love hypothesis and assumes the peel front has a two-scale form.

One then does a Taylor expansion to finish dealing with scale.

One then computes the first variation of the potential energy expression to obtain the gov-

erning equations (letting G∞ = D
2

(κ0)
2):

∆2w = 0 (1.1)

G ≈ G∞ +Dκ0w,11 (1.2)

G = Gc

(
ḟ , x1, x2

)
(1.3)

One then solves Equation (1.1) by separation of variables and gets:
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Wk (x1) = κ0x1 exp (− |k|x1) f̂ (k) (1.4)

It is evident from Equation (1.2) that the Fourier transform of the energy release rate is:

Ĝ (k) = 2πG∞δ (k) + 2D
(
κ0
)2 |k| f̂ (1.5)

= G∞

(
2π − 4 |k| f̂

)
(1.6)

Taking the inverse Fourier transform of Equation (1.6) yields:

G (x1) = G∞ −
4G∞
π

PV

∫ ∞
−∞

f (ξ)− f (x1)

(ξ − x1)2
dξ (1.7)

where PV is the principal value of the integral. Given that the critical energy release rate

is linear in the velocity, we can write:

G∞

(
2π − 4 |k| f̂

)
= F

(
G0

c (x1, f (x1))
)

+ µ
˙̂
f (1.8)

Here, we diverge slightly from [8]. We can now take this equation and discretize it in time

(taking µ = 1):
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˙̂
f = G∞

(
2π − 4 |k| f̂

)
−F

(
G0

c (x1, f (x1))
)

(1.9)

f̂ [n+1] − f̂ [n]

∆t
= −4G∞ |k| f̂ [n] + F

([
G∞ −G0

c (x1, f (x1))
][n]) (1.10)

f̂ [n+1] = f̂ [n] + ∆t
(
−4G∞ |k| f̂ [n] + F

([
G∞ −G0

c (x1, f (x1))
][n])) (1.11)

Equation (1.11) is the update rule given the previous timestep’s peel front.
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Chapter 2

Methods

There are two main components to this exploration of fracture mechanics of heterogeneous

materials. The first is a series of experiments that explores how different patterns affect

adhesion. The second is a computational exploration of the history of the peel front when

confronted with different patterns.

2.1 Experiment

The main premise of the experiment has been described above. The objective of the experi-

ment is to investigate how different patterns on a substrate affect adhesion. To this end, the

following experiment has been designed, based heavily off of the experiment used in [8].

2.1.1 Preparation

The first issue at hand is to select the patterns to test. After deliberating for some time,

the following patterns were chosen: horizontal, vertical, ±30◦, ±45◦, ±60◦, and semicircles

ranging from 0◦ to 270◦ (see Figures 2.1 to 2.6).

6



Figure 2.1: Horizontal Pattern

Figure 2.2: Vertical Pattern
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(a) 30◦ Angled Pattern (b) -30◦ Angled Pattern

Figure 2.3: ±30◦ Patterns

(a) 45◦ Angled Pattern (b) -45◦ Angled Pattern

Figure 2.4: ±45◦ Patterns
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(a) 60◦ Angled Pattern (b) -60◦ Angled Pattern

Figure 2.5: ±60◦ Patterns

2.1.2 Peel Testing

The experiment itself is fairly straightforward. The patterned substrate is mounted on a flat

table (to keep the peel angle relatively constant). The film is peeled off of the substrate at

a constant peel speed using a vertically mounted linear stage (see Figure 2.8).

2.1.3 Data

The data which will be analyzed is the force history. Using a DAQ, LabView, and a load

cell, it is quite easy to gather the data.

2.1.4 Procedure

1. Initialize

• Start-up load cell (but don’t collect data yet)
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(a) Semicircles — 0◦ (b) Semicircles — 90◦

(c) Semicircles — 180◦ (d) Semicircles — 270◦

Figure 2.6: Curved Patterns
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Figure 2.7: Random Pattern

• Move stage to 90mm

• Attach pattern to substrate using double-sided tape

• Setup (normal) tape in peel test initial configuration

2. Run

• Restart the load cell (and start collecting data)

• Turn on stage motor to raise stage to 100mm at a rate of 0.1mm/s

3. End data collection once the stage reaches 100mm

2.1.5 Control

In order for the data collected in Section 2.1.3 to make any sense, there needs to be a

baseline. The baseline is the force required to peel tape off of an unpatterned substrate.

This measurement allows the data collected from the experiment to be interpreted properly.
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Figure 2.8: Experiment setup
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2.2 Analytical Methods

The conventions followed throughout this thesis are as follows. Functions are notated as

f (x, t), while Fourier Transforms of functions are notated as f̂ (k, t) and alternatively as

F (f).

In studying thin film peeling analytically, the object of interest is the peel front — if one can

characterize that, one knows the precise shape of the thin film over time and space, which

provides detailed information about the shape of the film and thus information about how

the irregularities in the substrate affect the peeling process.

In order to characterize the peeling process, let us first define the peel front as y = f (x, t).

The dimensions of the substrate are L× L. Let us now define the locations of irregularities

in the substrate (the part that makes the substrate heterogeneous) using a function G (x, y).

Initially, G (x, y) will be periodic in both x and y, but that can (and will) change.

Now, to find how the peel front varies over time, we can write Equation (2.1). However,

this is much more convenient to work with if we work in Fourier space, thereby yielding

Equation (2.2).

When specifying a problem, we know G (x, y) and we know f (x, 0) (i.e. the initial condition

of the peel front). In order to solve this numerically, we can set up a finite difference scheme.

We discretize the time derivative using a Forward Euler scheme, yielding Equation (2.3),

where f̂n = f̂ (k, tn). This can now be implemented using various G (x, f (x, t)) to study the

evolution of the peel front.

∂f

∂t
(x, t) = c

∫ ∞
−∞

f (ξ, t)

|x− ξ|
dξ +G∞ −G (x, f (x, t)) (2.1)

∂f̂

∂t
(k, t) = −c |k| f̂ (k, t) + F [G∞ −G (x, f (x, t))] (2.2)
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f̂n+1 − f̂n

∆t
= −c |k| f̂n + F [G∞ −G (x, f (x, t))]n (2.3)
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Chapter 3

Results

3.1 Experimental Results

3.1.1 Results
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Figure 3.1: Homogeneous Trial 1
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Figure 3.2: Homogeneous Trial 2

Horizontal Pattern
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Figure 3.3: Horizontal Pattern Trial 1
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Figure 3.4: Horizontal Pattern Trial 2

Vertical Pattern
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Figure 3.5: Vertical Pattern Trial 1
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Figure 3.6: Vertical Pattern Trial 2

Angled Patterns
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Figure 3.7: −30◦ Pattern Trial 1
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Figure 3.8: −30◦ Pattern Trial 2
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Figure 3.9: 30◦ Pattern Trial 1
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Figure 3.10: 30◦ Pattern Trial 2
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Figure 3.11: −60◦ Pattern Trial 1
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Figure 3.12: −60◦ Pattern Trial 2
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Figure 3.13: 60◦ Pattern Trial 1
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Figure 3.14: 60◦ Pattern Trial 2

Curved Pattern

0 20 40 60 80 100 120

0.
0

0.
1

0.
2

0.
3

0.
4

curved_0_1.data

Time (ms)

F
or

ce
 (

m
N

)

Figure 3.15: Curved Pattern Orientation 0 Trial 1
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Figure 3.16: Curved Pattern Orientation 0 Trial 2
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Figure 3.17: Curved Pattern Orientation 1 Trial 1
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Figure 3.18: Curved Pattern Orientation 1 Trial 2
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Figure 3.19: Curved Pattern Orientation 2 Trial 1
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Figure 3.20: Curved Pattern Orientation 2 Trial 2

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

curved_3_1.data

Time (ms)

F
or

ce
 (

m
N

)

Figure 3.21: Curved Pattern Orientation 3 Trial 1
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Figure 3.22: Curved Pattern Orientation 3 Trial 2

Random Pattern
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Figure 3.23: Random Pattern Trial 1
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Figure 3.24: Random Pattern Trial 2
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Figure 3.25: Random Pattern Trial 3
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Figure 3.26: Random Pattern Trial 4

3.1.2 Discussion

As one would expect, in Figures 3.1 and 3.2, one can see that the force climbs steeply and

stays roughly constant for the duration of the peeling. This should be the baseline, as this

peeling experiment was carried out with no pattern at all, only a transparency.

In Figures 3.3 and 3.4, one can see that the force regularly oscillates, suggesting that the

force required to keep the tape peeling at a constant rate increases when the tape encounters

a line of ink parallel to the peel front. This makes sense since all points on the peel front are

affected equally.

In Figures 3.5 and 3.6, one can see that the force profile is analogous to the homogeneous

case. The force climbs quickly and stays relatively constant for the duration of the peeling.

In Figures 3.7 to 3.14, one can see that, like the horizontal case and unlike the vertical case,

the force varies quite regularly, increasing whenever a part of the front encounters a line of

the pattern, although the oscillation in force is less than in the horizontal case.

In Figures 3.15 to 3.22, one can see the anisotropic response of the tape to the pattern. The

force required in some configurations is less than in other configurations, despite the pattern

being the same.
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Finally, in Figures 3.23 to 3.26, one can see that a random pattern produces a different

output every time due to the fact that the placement of the tape on the pattern is different

every time.

With all of these different patterns tested, it is useful to compare the peak force for each

pattern against the homogeneous “pattern” ’s peak force. These values are listed in Table 3.1.

Pattern Peak Force (mN) (Trial 1, Trial 2)

Homogeneous 1.39722595, 1.35711272
Vertical 0.50075887, 0.56532128
Horizontal 0.48564452, 0.51067015
30◦ 0.55595294, 0.77913889
60◦ 0.61453621, 0.61322550
−30◦ 0.56490604, 0.63745234
−60◦ 0.48322745, 0.60448711

Table 3.1: Peak Forces for different patterns

3.2 Computational Results

3.2.1 Results
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Figure 3.27: G∞ = 1, amp = 1
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Figure 3.28: G∞ = 1, amp = 2
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Figure 3.29: G∞ = 1, amp = 5

G∞

1 2 5 10

A

1 2.0825 2.2243 3.2382 ∞
2 1.0178 1.0413 1.1611 1.6191
5 0.4026 0.40551 0.41648 0.44484
10 0.20064 0.20131 0.20355 0.20825

Table 3.2: Convergence Times (seconds)
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Figure 3.30: G∞ = 1, amp = 10
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Figure 3.31: G∞ = 2, amp = 1
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Figure 3.32: G∞ = 2, amp = 2
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Figure 3.33: G∞ = 2, amp = 5
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Figure 3.34: G∞ = 2, amp = 10
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Figure 3.35: G∞ = 5, amp = 1
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Figure 3.36: G∞ = 5, amp = 2
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Figure 3.37: G∞ = 5, amp = 5
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Figure 3.38: G∞ = 5, amp = 10
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Figure 3.39: G∞ = 10, amp = 1
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Figure 3.40: G∞ = 10, amp = 2
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Figure 3.41: G∞ = 10, amp = 5
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Figure 3.42: G∞ = 10, amp = 10
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Figure 3.43: G∞ = 1, amp = 8
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Figure 3.44: G∞ = 2, amp = 16

1.0 0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.45: G∞ = 5, amp = 40
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Figure 3.46: G∞ = 10, amp = 80
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Figure 3.47: G∞ = 15, amp = 120
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Figure 3.48: G∞ = 20, amp = 160
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Figure 3.49: G∞ = 25, amp = 200
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G∞ Ac

1 8
2 16
5 40
10 79
15 120
20 160
25 200

Table 3.3: Critical A for each G∞
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Figure 3.50: Correlation between G∞ and Ac
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Figure 3.51: Ac = 18 for square size of 0.125

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.52: Ac = 14 for square size of 0.15
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Figure 3.53: Ac = 12 for square size of 0.175
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Figure 3.54: Ac = 11 for square size of 0.2
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Figure 3.55: Ac = 8 for a square size of 0.25

Square Size Ac

0.125 18
0.15 14
0.175 12
0.20 11
0.25 8

Table 3.4: Critical A for G∞ = 1 for each square size

3.2.2 Discussion

First, a candidate set of G∞ and A was investigated. The G∞ that were initially investigated

were 1, 2, 5, and 10. The A that were initially investigated were 1, 2, 5, and 10 as well.

These results can be seen in Figures 3.27 to 3.42. The convergence times are recorded in

Table 3.2. The fact that the case G∞ = 1, A = 10 did not terminate was intriguing and

raised the question as to whether there is a relation between G∞ and Ac, that is, the critical

A such that the peel front gets stuck. Thus, the same G∞ were investigated, but simulations

were done until the critical Ac was found. These are listed in Table 3.3. These were then

plotted in Figure 3.50 and a line of best fit was found. This line was shown to be Ac = 8G∞,
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Figure 3.56: Correlation between square size and Ac

or G∞ = 1
8
Ac, or G∞
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= 1

8
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Once this was shown for one pattern, it is natural to investigate if the value of Ac depends

at all on the pattern. One of the first criteria that comes to mind is the size of the pattern.

Thus, the value of G∞ = 1 was selected to keep everything simple and Ac was investigated

for many different pattern sizes. This is shown in Figures 3.51 to 3.55. The relationship

between square size and Ac is shown in Table 3.4 and Figure 3.56. It is interesting to note

that there is a inverse relationship between square size and Ac, which intuitively makes sense.

If the pattern area is smaller, then the force exerted by each point in that area must be larger

to account for the smaller area of peel front affected by it.

This extremely perfect relationship between G∞ and Ac must have some root in the equation,

so it is instructive to work with the peel front equation to arrive at a formula for the

parameter in question. First, we have the peel front equation (Equation (3.1)). Initially,

G (x, f (x, t)) is a function that can return either 0 or A. By extracting an A out of G
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(Equation (3.2)), we convert G into a function that returns 0 or 1. This allows us to play

with A explicitly. We then divide everything by A (Equation (3.3)). When the peel front

gets stuck, ∂f̂
∂t

= 0. We are therefore trying to find the minimum A for a certain G∞ such

that ∂f̂
∂t

= 0. Equation (3.6) shows the resulting equation when solved for G∞
Ac

. If G∞
Ac

is

a constant (for a given G (x, f (x, t))), it means there is a direct relationship between the

Fourier transform of G (x, f (x, t)) and 1 − 4 |k| f̂ (k, t). In addition, from the second set of

results, it is clear that as the area of the squares is decreased, the critical amplification factor

is higher. From this, it is clear that the ratio between F [G (x, f (x, t))] and 1− 4 |k| f̂ (k, t)

becomes smaller as the area of the squares decreases.

∂f̂

∂t
(k, t) = −c |k| f̂ (k, t) + F [G∞ −G (x, f (x, t))] (3.1)

∂f̂

∂t
(k, t) = −c |k| f̂ (k, t)− AF [G (x, f (x, t))] +G∞ (3.2)

1

A

∂f̂

∂t
(k, t) = −4G∞

A
|k| f̂ (k, t)−F [G (x, f (x, t))] +

G∞
A

(3.3)

1

A

∂f̂

∂t
(k, t) =

G∞
A

(
1− 4 |k| f̂ (k, t)

)
−F [G (x, f (x, t))] (3.4)

0 =
G∞
A

(
1− 4 |k| f̂ (k, t)

)
−F [G (x, f (x, t))] (3.5)

G∞
Ac

=
F [G (x, f (x, t))]

1− 4 |k| f̂ (k, t)
(3.6)
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Chapter 4

Conclusion

In conclusion, it can be seen that there is a strong correlation between the variations in the

applied force and certain types of regular patterns. The theoretical model was verified by the

experimental results. Furthermore, the computational results show a surprising relationship

between the constant driving force G∞ and the critical amplification factor beyond which

the peel front gets stuck. It was also shown that this relationship depends inversely on the

size of the square patches. These effects further related two quantities in the peel front

equation which may, with further work, help predict the shape of the peel front for certain

G (x, f (x, t)). These effects should be further explored to examine their possible predictive

powers.
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