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Abstract

The motivation of this research was to utilize depth sensor technology to track human body motion.
Currently, many algorithms exist to do so — one of the most popular ones is SCAPE, which has two
stages. The first stage is the initialization phase, whereby the generic human model is modified to
resemble the actual human being tracked. The second stage is the tracking phase, whereby the generated
model is then used along with chosen keypoints to track the motion of the person. The key contribution
of this research is in the first phase. Normally, the initialization is done by hand by selecting several
keypoints on both the captured image and the model. This research seeks to automate that process using
a combination of edge detection and point-to-point correspondence given that the initial pose is roughly
known.

1 Acknowledgments

I would like to thank the following people and organizations.

• Dr. Joel Burdick for being an excellent mentor

• Caltech for this wonderful opportunity

• Mr. and Mrs. Daily for generously donating funds for my SURF

• Caltech for financial support

2 Introduction

Spinal cord injury (SCI) affects nearly 1.2 million people in the US alone. Repercussions include:

• loss of bowel/bladder movement

• blood pressure anomalies

• bone and muscle loss

• problems with temperature regulation

It is unfortunate that 61% of these people acquire the injury between the ages of 16 and 30. In the future,
scientists are looking at new ways of helping patients recover such as:

• stem cells

• neural tissue transplants

• growth factors

• genetic manipulation

Current therapy includes:

• physical therapy

• management of the repercussions

• occupational therapy

Epidural Spinal Stimulation (ESS) is an approach currently under investigation for SCI recovery. Physical
exercise during the stimulation process is a critical part of the therapy.

While patients exercise in clinic, there is no problem, as there are always many clinicians around to assist
the patient with training and safety. It is known that the therapy can help with recovery even after the
patient leaves the clinic. There currently exists a machine to help patients continue recovery away from the
clinic. However, currently, there is no way to effectively monitor the patients while they rehabilitate outside
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the clinic. The goal of this project, therefore, is to develop a human tracking technology, based on low-cost
RGB-D technology, which can monitor the patient’s exercises while at home.

3 Background

Because human tracking is useful for so many applications, there are several possible tracking algorithms
already available for use. One of the most prominent ones is an algorithm called SCAPE (see Figure 1),
which has two distinct phases. The first is the initialization phase, which (normally) relies on a human to
manually select correspondences between a captured image and a standard reference model. In effect, the
standard model is deformed using this data to fit a specific human. This results in a set of transformation
and deformation matrices which defines the SCAPE model. The second phase is the tracking phase, which
tracks changes in the joints over time based on the model and RGB-D data.

The second phase is reasonably efficient once the first phase has taken place. However, the first phase is
tedious and prone to human error. If there were some way to automate the process, it would be far more
efficient and possibly less prone to error. This is the premise and goal of this work.

Figure 1: Deformation transfer by the SCAPE model. [1]

4 First Attempt

4.1 Tree Classifiers

Before delving into the specifics of the method, it is necessary to have a simple introduction to tree classifiers.
First, a tree is a generic data structure. Each element is called a node — terminal nodes are nodes with no
sub-nodes. A tree consists of a “root node”, with edges connecting the root to its children nodes. A tree
classifier is a tree which takes data as input (in this case, a set of points) and categorizes each element of
the data. Each “split” in the classifier categorizes the input data to that node into, in this case, two distinct
groups (the two branches of the node). The criterion which decides how the input data is categorized at
each non-terminal node is called the “question”. Terminal nodes are given a classification which identifies
the data which is categorized into that node, thus fulfilling the goal of the classifier.

Every tree classifier has two main characteristics. The first is the set of so-called “questions” which determines
how the input data is classified. The second is the stopping rule, which dictates when a node is not split
any further. The classifier is trained by selecting the questions that minimize or maximize a given criterion.
In this specific scenario, the input data is a set of points. Additionally, the body is segmented into several
sections, with each section corresponding roughly to a body part (upper thigh, foot, upper arm, hand, and
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so on). Therefore, in this case, the criterion was the amount of information regarding the categorization of
the point gained about the data. Naturally, if the classifier is to be any good, the set of possible questions
must be quite large to allow the classifier to select the best one at each node of the tree.

4.2 Method

First, investigation was done of the available methods which could be used for initialization. All candidate
methods needed to be relatively efficient as well as relatively accurate. In our investigation, this led to a
fairly small collection of tree classifiers.

Tree classifiers have two main disadvantages. They require a tremendous amount of training data and the
training is extremely computationally expensive. Despite this, however, I attempted to implement a specific
type of classifier implemented previously in [9].

The question then arises as to how to select the set of possible questions. Following [9], a “feature” was
defined as in Equation (1) and was used in the formulation of the question.

f (~x, ~u,~v) = d

(
~x +

~u

d (~x)

)
− d

(
~x +

~v

d (~x)

)
(1)

~x is the vector from the origin to the point at which the feature is being calculated. ~u and ~v are offset vectors
which define the feature. d (~x) is a function which calculates the depth at a given point. If the point is a
point on the point cloud, its depth is returned. Otherwise, the depth of the closest point is returned.

The next question, however, was how to select the set of features to optimize over. This was performed
by taking the bounding box formed by the body and discretizing it. Too fine of a discretization led to
inordinately large computation times, whereas too coarse of a discretization led to a badly performing tree
classifier.

On top of this, however, there was the issue of training data and overall training time. Most training takes
on the order of at least hundreds of thousands of training data sets and at least a day. Not having access to
a supercomputer, it would have taken several weeks just to see if the tree worked, even if we had had access
to many data sets. After working on implementing this method for several weeks and attempting to make
many adjustments to find out if using few data sets and carefully designed features would work, we decided
to abandon this method.

5 Novel Method

We designed a novel method to find and match corresponding points on a captured image and a reference
model. The method is a modified gradient descent method designed to compute the transformations necessary
to align the captured point cloud with the reference model. As of this writing, full implementation has not
been completed. Preliminary efforts show great promise, but more work is needed to confirm the viability
of this strategy.

There are two steps in this method. The first is to obtain a correspondence between points on the captured
point cloud and points on the model. This is fairly straightforward if the position is roughly known and the
captured point cloud and the model point cloud contain the same number of points. The second step is to
utilize a gradient descent algorithm to modify the joint and shape parameters of the model point cloud to
more closely coincide with the captured point cloud. The method resembles an iterated ICP method in the
sense that there are two phases to each iteration of the second step. The first phase consists of modifying the
model to fit the data. The second phase consists of updating the model parameters to reflect the changed
orientation.

In order to utilize the gradient descent algorithm, it is necessary to have both a function which will be
minimized as well as a method to calculate the gradient of that function. The function chosen is of the form
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of Equation (2), where p̄i represents the position of the measured point, mi (g) represents the position of
the corresponding point on the theoretical model, and g is the transformation that more closely aligns the
model points with the measured points.

E (g) =

M∑
i=1

|| p̄i −mi (g) || (2)

6 Results

Currently, only a simplified version of the first step has been implemented. In this current implementation,
the task is to correctly identify corresponding points in two different point clouds. Both contain identical
numbers of points and one point cloud is shifted by 0.5 units to the right. These results are summarized in
Table 1 and Figure 2.

The code attempts to protect against issues arising when the two point clouds overlap by calculating the
normal vector at each point and selecting the matching point from the set of points with a parallel normal
vector. This leads to the great results seen in Table 1.

There are, however, several problems with this version. This code expects that both point clouds will
contain the same number of points, which is not necessarily true. Furthermore, it expects no noise, which
is completely unreasonable in the context of the larger picture. That being said, this code will be improved
upon to take those factors into consideration while still yielding reasonable results.

Figure 2: Point matching is performed between original point cloud (blue) and shifted point cloud (red)

Translated Point Real Original Point Matched Original Point

(1.5,-1,-1) (1,-1,-1) X
(-0.5,1,-1) (-1,1,-1) X
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(-0.5,-1,1) (-1,-1,1) X
(-0.5,-1,-1) (-1,-1,-1) X
(1.5,-1,0) (1,-1,0) X
(-0.5,1,0) (-1,1,0) X
(-0.5,0,1) (-1,0,1) X
(-0.5,-1,0) (-1,-1,0) X
(-0.5,0,-1) (-1,0,-1) X
(1.5,-1,1) (1,-1,1) X
(-0.5,1,1) (-1,1,1) X
(1.5,0,-1) (1,0,-1) X
(0.5,1,-1) (0,1,-1) X
(0.5,-1,1) (0,-1,1) X
(0.5,-1,-1) (0,-1,-1) X
(1.5,0,0) (1,0,0) X
(0.5,1,0) (0,1,0) X
(0.5,0,1) (0,0,1) X
(-0.5,0,0) (-1,0,0) X
(0.5,-1,0) (0,-1,0) X
(0.5,0,-1) (0,0,-1) X
(1.5,0,1) (1,0,1) X
(0.5,1,1) (0,1,1) X
(1.5,1,-1) (1,1,-1) X
(1.5,1,0) (1,1,0) X
(1.5,1,1) (1,1,1) X

Table 1: Matching Points algorithm

7 Challenges

The main challenges associated with this project have had to do with the sheer amount of data and compu-
tation required by the tree-based classifier approach. As mentioned earlier, efforts to pare down the amount
of data needed did not work as expected and led to trees that did not operate properly.

8 Further Work

The method described in this paper will be implemented and tested and will hopefully yield results. Prelim-
inary testing indicates that the point-to-point correspondence step is somewhat easily achievable given that
both point clouds have the same number of points as shown in the results section. Much work remains to
be done to fully implement the algorithm.

A Code

Listing 1: CalculateNormals.cpp

#include <pcl/point_types.h>

#include <pcl/io/pcd_io.h>

#include <pcl/features/normal_3d_omp.h>

#include <cmath >

#include <iostream >
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bool parallel(pcl:: Normal &u, pcl:: Normal &v)

{

float x1 = u.normal_x;

float y1 = u.normal_y;

float z1 = u.normal_z;

float x2 = v.normal_x;

float y2 = v.normal_y;

float z2 = v.normal_z;

float dotProduct = x1 * x2 + y1 * y2 + z1 * z2;

float magU = sqrt(pow(x1 , 2) + pow(y1 , 2) + pow(z1 , 2));

float magV = sqrt(pow(x2 , 2) + pow(y2 , 2) + pow(z2 , 2));

float cosine = dotProduct / (magU * magV);

if(cosine > 0.9999)

{

return true;

}

else

{

return false;

}

}

void calculateNormals(pcl::PointCloud <pcl::PointXYZ >:: Ptr &cloud ,

pcl:: PointCloud <pcl::Normal >:: Ptr &normals)

{

pcl:: NormalEstimationOMP <pcl::PointXYZ , pcl::Normal > NE;

NE.setInputCloud(cloud);

pcl:: search ::KdTree <pcl::PointXYZ >:: Ptr tree(new pcl:: search ::KdTree <pcl::

PointXYZ >());

NE.setSearchMethod(tree);

NE.setRadiusSearch (2);

NE.compute(*normals);

}

void matchPoints(pcl::PointCloud <pcl::PointXYZ >:: Ptr &model ,

pcl:: PointCloud <pcl::PointXYZ >:: Ptr &real ,

pcl:: PointCloud <pcl::Normal >:: Ptr &modelNormals ,

pcl:: PointCloud <pcl::Normal >:: Ptr &realNormals ,

std::vector <std::tuple <pcl::PointXYZ , pcl::PointXYZ >> &mapping)

{

pcl:: KdTreeFLANN <pcl::PointXYZ > kdtree;

int K = 1;

std::vector <int > indices;

std::vector <float > distances;

pcl:: Normal prevNorm;

pcl:: Normal curNorm;

pcl:: Normal tmpNorm;

for(size_t i = 0; i < real ->points.size(); i++)

{

curNorm = realNormals ->points[i];

int k = 0;

pcl:: PointCloud <pcl::PointXYZ > reducedCloud;

reducedCloud.resize(model ->points.size());
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for(size_t j = 0; j < modelNormals ->points.size(); j++)

{

tmpNorm = modelNormals ->points[j];

if(parallel(curNorm , tmpNorm))

{

float a = (*model).points[j].x;

float b = (*model).points[j].y;

float c = (*model).points[j].z;

reducedCloud.points[k].x = a;

reducedCloud.points[k].y = b;

reducedCloud.points[k].z = c;

k += 1;

}

}

reducedCloud.resize(k);

pcl:: PointCloud <pcl::PointXYZ >:: Ptr reducedCloudPtr(new pcl:: PointCloud <pcl

::PointXYZ >( reducedCloud));

kdtree.setInputCloud(reducedCloudPtr);

kdtree.nearestKSearch ((*real).points[i], K, indices , distances);

std::tuple <pcl::PointXYZ , pcl::PointXYZ > tmp(real ->points[i],

reducedCloudPtr ->points[indices [0]]);

mapping.push_back(tmp);

prevNorm = curNorm;

}

}

void construct_hat_matrix(std:: vector <float > &vec ,

std:: vector <std:: vector <float > > &res)

{

res.clear();

std:: vector <float > tmp;

tmp.push_back (0);

tmp.push_back(-vec [2]);

tmp.push_back(vec [1]);

res.push_back(tmp);

tmp.clear();

tmp.push_back(vec [2]);

tmp.push_back (0);

tmp.push_back(-vec [0]);

res.push_back(tmp);

tmp.clear();

tmp.push_back(-vec [1]);

tmp.push_back(vec [0]);

tmp.push_back (0);

res.push_back(tmp);

}

void matrix_vector_mult(std:: vector <std:: vector <float > > &R,

pcl:: PointXYZ &p, std:: vector <float > &res)

{

res.clear();

for(int i = 0; i < R.size(); i++)

{

float r = 0;

for(int j = 0; j < R[i].size(); j++)

{
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if(j == 0)

{

r += R[i][j] * p.x;

}

else if(j == 1)

{

r += R[i][j] * p.y;

}

else

{

r += R[i][j] * p.z;

}

}

res.push_back(r);

}

}

void initialize_R_matrix(std:: vector <std:: vector <float > > &R)

{

R.clear ();

std:: vector <float > tmp;

tmp.push_back (0);

tmp.push_back (0);

tmp.push_back (0);

R.push_back(tmp);

tmp.clear();

tmp.push_back (0);

tmp.push_back (0);

tmp.push_back (0);

R.push_back(tmp);

tmp.clear();

tmp.push_back (0);

tmp.push_back (0);

tmp.push_back (0);

R.push_back(tmp);

}

void calculate_dmdg(std:: vector <std:: vector <float > > &dmdg ,

pcl:: PointXYZ &p,

std:: vector <std:: vector <float > > &R)

{

std:: vector <float > tmp , rotated;

std:: vector <std:: vector <float > > Rzi;

matrix_vector_mult(R, p, rotated);

construct_hat_matrix(rotated , Rzi);

tmp.push_back (1);

tmp.push_back (0);

tmp.push_back (0);

tmp.push_back(Rzi [0][0]);

tmp.push_back(Rzi [0][1]);

tmp.push_back(Rzi [0][2]);

dmdg.push_back(tmp);

tmp.clear();

tmp.push_back (0);

tmp.push_back (1);

tmp.push_back (0);

tmp.push_back(Rzi [1][0]);

tmp.push_back(Rzi [1][1]);

tmp.push_back(Rzi [1][2]);
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dmdg.push_back(tmp);

tmp.clear();

tmp.push_back (0);

tmp.push_back (0);

tmp.push_back (1);

tmp.push_back(Rzi [2][0]);

tmp.push_back(Rzi [2][1]);

tmp.push_back(Rzi [2][2]);

dmdg.push_back(tmp);

}

void transpose(std:: vector <std:: vector <float > > &cis ,

std:: vector < std:: vector <float > > &trans)

{

for(int i = 0; i < cis [0]. size(); i++)

{

std:: vector <float > tmp;

for(int j = 0; j < cis.size(); j++)

{

tmp.push_back(cis[j][i]);

}

trans.push_back(tmp);

}

}

void scalar_mult(std:: vector <std:: vector <float > > &mat ,

float mult)

{

for(int i = 0; i < mat.size(); i++)

{

for(int j = 0; j < mat[i].size(); j++)

{

mat[i][j] *= mult;

}

}

}

void vector_subtract(std:: vector <float > &a,

std:: vector <float > &b,

std:: vector <float > &res)

{

for(int i = 0; i < a.size(); i++)

{

res.push_back(a[i] - b[i]);

}

}

void vector_self_add(std:: vector <float > &orig ,

std:: vector <float > &add)

{

if(orig.size() > 0)

{

for(int i = 0; i < orig.size(); i++)

{

orig[i] += add[i];

}

}

else

{
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for(int i = 0; i < add.size(); i++)

{

orig.push_back(add[i]);

}

}

}

void error_gradient(std:: vector <std::tuple <pcl::PointXYZ , pcl::PointXYZ > > &

mapping ,

std:: vector <float > &g,

std::vector <float > &sum)

{

sum.clear();

for(int i = 0; i < mapping.size(); i++)

{

pcl:: PointXYZ m = std::get <0>( mapping[i]);

pcl:: PointXYZ p = std::get <1>( mapping[i]);

std:: vector <float > sum_1, sum_2, sum_3;

std:: vector <std:: vector <float > > dmdg , R, dmdg_transposed;

initialize_R_matrix(R);

calculate_dmdg(dmdg , m, R);

transpose(dmdg , dmdg_transposed);

matrix_vector_mult(dmdg_transposed , p, sum_1);

matrix_vector_mult(dmdg_transposed , m, sum_2);

vector_subtract(sum_1, sum_2, sum_3);

vector_self_add(sum , sum_3);

}

}

int main()

{

pcl:: PointCloud <pcl::PointXYZ >:: Ptr cisCloud(new pcl:: PointCloud <pcl::PointXYZ >)

;

pcl:: PointCloud <pcl::PointXYZ >:: Ptr transCloud(new pcl:: PointCloud <pcl::PointXYZ

>);

pcl::io:: loadPCDFile <pcl::PointXYZ > ("/home/chiraag/Documents/Caltech/SURF_2014/

Code/Python/cube -example.pcd", *cisCloud);

pcl::io:: loadPCDFile <pcl::PointXYZ > ("/home/chiraag/Documents/Caltech/SURF_2014/

Code/Python/cube -example -translated -0.5. pcd", *transCloud);

pcl:: PointCloud <pcl::Normal >:: Ptr cisCloudNormals (new pcl:: PointCloud <pcl::

Normal >);

pcl:: PointCloud <pcl::Normal >:: Ptr transCloudNormals (new pcl:: PointCloud <pcl::

Normal >);

std::vector <std::tuple <pcl::PointXYZ , pcl::PointXYZ >> mapping;

std::cout << "Calculating normals ..." << std::endl;

calculateNormals(cisCloud , cisCloudNormals);

calculateNormals(transCloud , transCloudNormals);

std::cout << "Calculated normals!" << std::endl;

std::cout << "Matching points ..." << std::endl;

matchPoints(cisCloud , transCloud , cisCloudNormals , transCloudNormals , mapping);
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std::cout << "Matched points!" << std::endl;

for(int i = 0; i < mapping.size(); i++)

{

pcl:: PointXYZ a = std::get <0>( mapping[i]);

pcl:: PointXYZ b = std::get <1>( mapping[i]);

std::cout << "(" << a.x << "," << a.y << "," << a.z << ") -> (" << b.x << ",

" << b.y << "," << b.z << ")" << std::endl;

}

// std::vector <float > g;

// std::vector <float > gradient;

// g.push_back ( -1.5);

// g.push_back (0);

// g.push_back (0);

// error_gradient(mapping , g, gradient);

// std::cout << gradient [0] << " " << gradient [1] << " " << gradient [2] << std::

endl;

return 0;

}
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