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Abstract

The objective of this project was to create an auditory representation and inter-
pretation of chaos, where a pattern called a strange attractor was reproduced in the
music. A strange attractor is a particular manifestation of chaos in which one may not
know the exact points, but knows the points will fall around a certain pattern. Chaos
is a complex, dynamic system which is often analyzed using conventional, quantitative
techniques. This project pursued a research venture into the beautiful, but alien (to
the world of math), realm of music in order to completely understand the nature of
chaos. By adding this new, richer dimension into the mix, the hope is that one can
immediately pick out certain aspects of chaos which are not immediately visible from
conventional graphs.

1 Introduction

Dynamical systems form the basic framework of the world. Everything - from the cells
in the body to the supernovas billions of light-years away - is composed of dynamic systems.
Such dynamic systems are almost always nonlinear. And where there is a nonlinear dynamic
system, there is the potential for - and usually the occurrence of - chaos and other complicated
phenomena.

The weather, the human brain, the movements of the planets, engineering systems, eco-
nomic systems, sociological models, microscopic behavior - everything has an element of
chaos. Chaos is where one cannot exactly predict the future position of a system, but one
knows it will be captured inside some pattern, called a strange attractor. Now, chaos is a
very nebulous concept, one that has emerged only in recent years with the seminal work
of Lorenz and other physicists. The exact consequences and ramifications of chaos are just
beginning to be known, but it seems to be a fact that it appears everywhere.

For instance, it may seem that weather phenomena would become increasingly more pre-
dictable with increasing knowledge of scientific principles and computational ability. How-
ever, Lorenz first discovered an element of unpredictability in the form of chaos through
a simple mathematical model consisting of three differential equations. Chaos is in fact
wrapped up in the very fabric of weather simulation in that, the equations used for pre-
dicting the weather are extremely sensitive to the initial state of the “particles”. If, for
example, the position of one cloud is off by a millimeter, it could affect whether it rains or
doesn’t rain tomorrow. Of course, as mentioned earlier, chaos does appear in other natural
and engineered dynamic systems where their behavior is also critically dependent on initial
conditions. It is for this reason that it is extremely important to be able to understand and
characterize chaos.

The classical way of looking at chaos, as well as other physical phenomena, has always
been graphs. 2D graphs, 3D graphs, graphs, graphs, and more graphs. However, there are
major limitations to this approach to understanding chaos. First, it is impossible to draw
a 4D (or higher dimensional) graph. This means when three dependent variables need to
be plotted against an independent variable, one cannot capture the full picture. At best,
one may obtain snapshots of sorts. These methods include Poincaré maps, 3D graphs, etc.
These methods are not encompassing of the full picture in the same way that a 1D graph of



an object moving in two dimensions is not sufficient to understand the motion of the object
to the fullest degree.

The novel idea advanced in the current study is to add an extra dimension - that of
music - to the representation, and interpretation, of chaos1. Human ears are extremely
discriminating in many ways; for one, the ears can, quite easily, distinguish one pitch from
another, even if the pitches are relatively close together. In an intuitive way, classical (and
non-classical) musicians are well aware of this effect which they exploit to make their music
interesting and captivating to the human listener.

The hypothesis presented in this work is that one would be able to hear subtle differences
in the music which has been carefully designed to represent complex behavior of dynamic
systems. This perception would provide an extra-dimensional insight into dynamic system
behavior. For example, one would be able to differentiate between a chaotic pattern and a
non-chaotic pattern just by listening to the auditory representation. This auditory repre-
sentation would in essence lead to a superior understanding of chaos because it adds a new
dimension that transcends paper and computer screens; one is not restricted to the three
planar dimensions anymore.

1.1 Previous Work

The author was actually surprised to find that there is indeed some prior work, although
it is quite sparse and limited in scope. The following is a brief description of this work.

Little [3] explored creating music from chaos in many different ways. His interest was
focused on music composition rather than characterizing chaos, and is hence not as relevant
to this work. First, he took an 88 key chromatic scale and played it, using quarter notes
for the lowest octave and increasing smoothly to thirty-second notes for the highest octave,
playing the middle octaves the loudest and getting softer as he approached either end. Then,
he randomly selected a couple of notes and switched them around. He repeated the process
for loudness data and duration data. He then played this ‘flawed’ chromatic scale. He
repeated the process until it sounded nothing like the original smooth chromatic scale. The
nice thing was, there would be a different final output every time the program ran, as the
process was completely random. He also used the logistic map, developed by Verhulst to
model population growth, as the basis for creating music. However, he did not use a linear
mapping; instead, he used a scrambled mapping to make the music more interesting. In
addition, he took the patterns created by the mapping and used fractals to modify them.

In some of the first explorations into musical representation of chaos, Dabby [2] used
chaos to modify existing music. First, she created a reference attractor by plugging the initial
condition (1,1,1) into a fourth-order Runge–Kutta implementation of the Lorenz system of
equations (which is a model for the weather):

x = σ(y − x) (1)

y = rx− y − xz (2)

z = xy − bz (3)

1The author, i.e., myself(!) pleads guilty of a bias towards music because of his/her immersion in classical
music from a very young age
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with the parameters, r = 28, σ = 10, and b = 8
3
. For this set of parameters, the system is

known to exhibit chaos. She then mapped each note in the original piece to a point in the
reference attractor.

After that, she took another initial condition (like (.999,1,1)) and generated solution
points of that attractor. Then, for each point in the new attractor, she found the smallest
point in the reference attractor that was greater than the current point in the new attractor.
When she had found this point, she assigned the note mapped to it to the current point in
the new attractor.

In this system, only points in the original piece could appear in the modified piece. Not
all points were changed; some points stayed the same if the new point was not very different
from the reference point. However, other points were completely modified, due to the large
difference between the two attractors later in the sequence. Some disadvantages to this
system were that some points in the new attractor didn’t have any points in the reference
attractor that were greater than them. In this case, a rest was substituted.

In this way, variations not only used the same notes, but also retained the flavor of the
original piece. However, sometimes, the variations do not sound as pleasant as one would
like. In this case, one can use one’s judgement and retain those variations which sound nice
and discard those which sound discordant.

The main objective of Dabby’s project was to create variations to serve as idea generators.
The computer would create a modified version of a classical Bach or Beethoven piece. The
modern composer would then like some of the variations created and modify or use them in
his/her own work. In this way, one can generate a lot of ideas for pieces with relatively little
work, which was the main idea of the project.

Bilotta, et al., [1] tried to translate chaos into music as well. They used a musification
triangle to symbolize the path from chaos data to music: equations to coding system(s) to
musical language. They tried to use computers to algorithmically create music that sounded
pleasant to people. First, they picked discrete points and regions to translate into music.
Then, they used the formula

md(t) = a1x(t) + a2y(t) + a3z(t) (4)

where a1, a2, and a3 are either 0 or 1 to turn off or on the effect of that particular coordinate
on the sum. Then, they took the number of samples/second and divided it by sixteen to get
a “temporal parameter” τ . They then used the equation

md= a1
τ∑
i=1
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(5)

where SR represents the number of samples per second and ν represents the basic frequency
which will modulated by the x(t), y(t), and z(t) values at each time t to figure out the
duration and frequency of each note. In addition, they also took a predefined sequence of
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notes and modified them using chaos. They took each equation and found the maximum
and minimum values. They then split up the volume contained in that interval into many
tiny cubes. Since that gives three integer numbers, they associated each with a particular
sequence of notes. They then explored other methods of selecting the points.

1.2 Present Work

The current work extends and explores these ideas further to create music from chaos.
However, the idea here is quite different. First of all, the objective is to understand com-
plexity in dynamic systems through the medium of music. In the process, if it creates good
music, that is a bonus! Secondly, new music is being generated here as opposed to modifying
existing compositions.

There is a great deal of similarity between chaos and jazz. Like jazz, chaos sometimes
makes extraordinary leaps outside the familiar - and comfortable - domain only to return
back to where it was. This is akin to improvisation in jazz, where one person will go out of the
scale purposefully to create tension, but then come back to the main scale to create a sense
of fulfilment. In addition, the introduction of chord progressions creates an approximate
beat which adds a bass feel to the whole piece; it also provides more complexity to the music
to help interpret a higher degree of complexity in dynamic system behavior.

The current work uses the ubiquitous example of chaotic behavior: the Chua circuit. The
Chua circuit is chosen because it is an electrical circuit which can be built relatively easily
and with relatively inexpensive parts. In addition, its parameters can be tweaked with ease
to control and exhibit regular or chaotic behavior.

The current work also required that data be collected. The National Instruments NI-PXI
1045 Data Acquisition Assistant was used for this task. The LabView software was used in
order to program the PXI 1045. In addition, the software Musik2 was used in order to parse
the music notation created by the Chaos2Musik3 program, both of which were developed
and improved during the course of this project.

2 Materials & Methods

2.1 Setting up the data collection

The circuit mentioned in Section 1.2 (Present Work) was built by a lab-mate (see Figure
5 for a photo and Figure 2 for a circuit diagram). A National Instruments NI PXI-1045 and
a Gateway T-series laptop running LabView software were used to collect data from that
circuit. The circuit had to be wired to the collection breadboard attached to the PXI-1045.
Once that was accomplished, there was the sampling rate to consider. If it was too high,
the PXI-1045 would just stop collecting data because of a buffer overflow. If it was too low,
there wouldn’t be enough resolution to capture all the dynamics. Therefore, 75,000 samples
per second was decided as the ideal sampling rate. The data was stored on the PXI-1045 for
two reasons:

2A name invented by the author for the first program developed during the course of this project
3Another name invented by the author for the second program developed during the course of this project
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• No buffer overhead with the transfer between the computer and the PXI-1045.

• PXI was therefore faster to write to.

The data was stored in a two-dimensional array where columns represented different channels
and rows represented different measurements for each channel. There was initially only one
channel–the voltage across one of the resistors in the circuit–but it was decided that it would
be better to also record the input voltage on a separate channel so a bifurcation diagram
could be made later on. I produced several bifurcation diagrams, one of which is seen in
Figure 1.

2.2 Parsing the data

In order to parse the data and create the music, a couple of custom commands had to be
set up which could then be used in the musik file that was used to translate text notation
into music. The following were set up:

• ^ and _ represent lowering and raising by an octave respectively.

• # and b represent sharps and flats respectively.

• \instrument{instrument} to change the instrument.

• \chord[chord]{notes} to play the chord chord while the notes notes are playing.

• \scale{scale} to change the scale.

The parsing of the data could now begin.

2.3 Translating the Data into Musik

In order to parse the data, the range of the data was first divided up into intervals
for notes, intervals for octaves, intervals for durations, and intervals for instruments. For
example, the note space consists of:

C D E F G A B R

where each letter represents either a note or, in the case of “R”, a rest. Since there are eight
elements in the note space, the range was divided up into eight intervals. Three octaves
(the octave below Middle C, the Middle C octave, and the octave above Middle C), eight
durations (quarter, quarter dotted, eighth, eighth dotted, sixteenth, sixteenth dotted, thirty-
second, thirty-second dotted), and three instruments (Electric Clean Guitar, Piano, Tenor
Sax) were used.

Once the intervals were created, the program checked to see which interval each data
point was in. Depending on where the data point fell, the program assigned a different value
to the associated array. Finally, the idea of time-delay was used to create the final piece.
Time-delay is when one takes a set of data having n points and plots the subset of the data
comprised of the 1st point to the (n− 1)th point against the subset of the data comprised of
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the 2nd point to the nth point. For example, if one takes the data set 1 2 3 4 5 6 7 8 9 10,
one would plot the subset 1 2 3 4 5 6 7 8 9 against the subset 2 3 4 5 6 7 8 9 10. In
this case, one would get a straight line. However, when this operation is performed on a
chaotic series, one will get the attractor in 2 dimensions. If one wants the 3 dimensional
attractor, one must modify the procedure to create three subsets instead of just two. For
example, one would plot 1 2 3 4 5 6 7 8 for the x coordinates, 2 3 4 5 6 7 8 9 for the
y coordinates, and 3 4 5 6 7 8 9 10 for the z coordinates. One important point is that
the amount of time-delay varies for each chaotic system. The Chua attractor (in three
dimensions) is shown in Figure 4.

2.4 Chord Progressions

After the basic melody worked, chord progressions were implemented to give the piece the
feel of a real song. Three different chords were rotated through in this order: CM7 FM7 CM7 GM7 CM7.
Then, roughly equal measures of each chord were created by waiting until the total duration
of the “measure” was equal to or greater than 1. The “7” version of the chords was chosen
because jazz usually uses the “7” chord instead of just the major chord. When one plays
the “7” version of the chord, one plays the root, 3rd, 5th, and 7th notes. For example, the
CM7 chord would be C+E+G+B, because C+E+G is the major chord and B is the 7th note in
the C major scale. This applies to all of the chords mentioned: FM7 is F+A+C+E and GM7 is
G+B+D+F#. Chord progressions create an approximate rhythm and add a bass sound to the
overall piece. The rhythm is approximate because notes are not broken in the middle of the
duration, which is what would have to be done in the notation in order to change the chord.

2.5 Scale changes

Once a basic beat-like structure had been obtained using chord progressions, base-note
chord changes based on a threshold value were implemented. That is, whenever the circuit’s
voltage exceeds a certain predetermined value, the possible chords change to signify that the
circuit has, in this case, entered the other loop of the attractor. However, modes must be
explained first before this section can be explained in more detail.

Modes are like the ancient equivalent of scales. They were used before the current equal
tempered scale came into being. That is, the intervals between one key and the next weren’t
always the same. For example, D Dorian mode starts with D and plays all of the keys in C
Major. Those keys, in today’s notation, would be

D E F G A B C^ D^

where ^ represents the higher octave. F Lydian would start with F and play all the notes
from C major. In other words, C Major, D Dorian, and F Lydian are all the same. If one
played D Dorian with the C Major chords, one would not hear any difference. However, the
tension occurs if one plays D Dorian with the D Major chord progression, as the F# and C#

which are present in the D Major chord progression are not present in the D Dorian scale.
Two different chord progressions were switched between – C major and F minor. The F

minor chord progression is as follows: Fm7 Bbm7 Fm7 CM7 Fm7. F minor has enough different
keys that it will cause a lot of tension and can be noticed easily.
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2.6 Personal Role

This project involved the following tasks; my personal role is as indicated.

• Building Chua’s circuit [I was not involved]

• Setting up and designing data acquisition [My role: 100% with some supervision]

• Conception of the central idea of the project [My role: 75%]

• Exploration of the central idea [My role: 90%; some suggestions and feedback from
mentor and lab-mates]

• Detailed review of literature [My role: 100%]

• Analysis of numerical data using R Statistical Software [My role: 100%]

• Analysis of experimental data using R Statistical Software [My role: 100%]

• Musical translations using java methods (23 methods) [My role: 100%]

• This report [My role: 100%]

3 Code

The code consists of two programs - one to convert the chaos data into a special syntax
and another to understand the syntax and play the music. It was separated into two tasks
because of the following.

• Playing the music required interaction with a MIDI package (which was also developed
by the author, but it is inherently distinct from the chaotic analysis).

• The syntax developed is really easy to create programmatically (and can be expanded
and developed by others in the future).

The premise of the first program was to set up different intervals and figure out where
each data point stood in the intervals so that it could be assigned the proper object. To that
end, it consisted of one main method and three auxiliary methods. There would need to be
four arrays which would contain the data to be written to the output file. These consisted
of

• A Notes array which would contain the notes (possible values include: C, D, E, F, G,
A, B, or R)

• A Duration array which would contain the durations (possible values include: 1
4
, 1

4
., 1

8
,

1
8
., 1

16
, 1

16
., 1

32
, 1

32
.)

• An Octave array which would contain the octaves of the notes in the Notes array
(possible values include: the middle-C octave, the octave above middle-C, and the
octave above middle-C.
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• An Instrument array which would contain the instrument which is to play each note
(possible values include: Electric Guitar (Clean), Piano, and Tenor Saxophone).

The main method did the following. First, it imported the text file containing the data.
Then, it used an auxiliary method to find the range and minimum of the data set. Next, it
calculated the increments necessary to ensure even intervals for each array. The increment
was determined by dividing the range by the number of possibilities in each array. This
means the Notes array has a different increment than the Duration array, which has a
different increment from the Octave and Instrument arrays (the Octave and the Instrument
arrays contain the same number of possibilities, which means they have the same increment).
Then, each data point was examined and which increment it belonged to in each array was
determined. That is, the note it represented was identified and the corresponding note was
added to the Notes array. Then, which duration the data point represented was determined
and the corresponding duration was added to the Duration array. This step was repeated
with the other two arrays.

Once each point for each array had been evaluated, it was ready to implement time-delay
in the program. Time-delay is one, simple way of visualizing a strange attractor in either two
or three dimensions. To plot the attractor in two dimensions, one takes a subset of the data
and plots it against another, staggered, subset of the same data, which reveals the attractor.
The amount of staggering is called the time-delay and is different for each chaotic system.
This idea was introduced into the fourth dimension with the program. A time-delay of 1
was implemented and the notes to be played were assembled. To figure out the first note
to be played, the instrument from the first index of the Instrument array, the note from the
second index of the Notes array, the octave from the third index of the Octave array, and the
duration from the fourth index of the Duration array were chosen. This was repeated until
the instruments had run out; the resulting (assembled) notes were stored into a new array.
That new array was written into a file line by line. This was the file the second program
would parse.

The premise of the second program was to take a text file, written in a particular format,
and play the music embedded in it. To this end, it contained one main class (written by
me), containing one main method and eighteen auxiliary methods, as well as two auxiliary
classes written by me and one auxiliary class used to save the song as a wav file. The main
method imports the file specified and stores it into an array. Then, it takes each line and
separates it by spaces. If the line starts with a “#”, it ignores that line and moves on to the
next line. If the line doesn’t start with a “#”, it then looks at each “word” to see whether it
starts with a “\” or not. If it does, it knows there’s a starting “{” and then matches braces
until it finds the one matching the starting one. Then, it calls an auxiliary method to parse
that command and, possibly, nested commands. If the “word” does not start with a “\”, it
calls another auxiliary method if the expression starts with a “{” and contains a “/”, which
is code to play more than one note at the same time in a melody. If the “word” does not
start with either a “\” or a “{”, but starts with an “R” (a.k.a. it is a rest), the program
calls an auxiliary method to parse the rest, as rests have no octave! If the “word” fails all
of the above tests, the program calls an auxiliary method to parse the note.

The auxiliary method which parses the control sequences/commands is itself very com-
plicated. It must figure out which control sequence has been given and, for the given control
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sequence, whether the appropriate arguments have been given. As of now, the auxiliary
method can parse the following commands:

• \newSection[name]{notes}

• \section{name of previously defined section using newSection command}

• \scale{name of scale to switch to}

• \slur{notes to play}

• \tempo{tempo to use}

• \instrument{instrument to use}

• \chordInstrument{instrument to use for chords}

• \chord[chord to use]{notes to play}

Another challenge was to implement all, or almost all, features inside control sequences.
However, due to the implementation of some of the features, such as \section{}, it was
necessary to implement work-a-rounds.

For this project, the following features were used:

• notes

• \chord[chord to use]{notes to play}

• \instrument{instrument to use}

• \chordInstrument{instrument to use}

4 Results

After running some of the data collected from the circuit as well as some data manufac-
tured using Java, it was clear that the new music sounded much better than that of previous
researchers. It also seemed to produce sounds which mirrored the attractor. When the points
were on the lower loop of the aforementioned attractor, the frequencies were low. When the
points were on the higher loop of the attractor, the frequencies were high. Therefore, when
one played the piece, one could immediately sense when the points jumped from one loop to
the other, which was very remarkable.

In addition, switching the chord sequence based on the octave lets one distinguish even
more easily between the two parts of the attractor. The piece goes into F minor whenever
the notes go above the middle C octave. This creates a dissonant tone which is similar to
the improvisation done in jazz. Since the F minor chord progression contains keys not found
in the C major chord progression, yet the notes are still in C major, there is tension which
is relaxed only when the chord progression returns to C major. This tension is the reason
why one can tell so easily where the music is in terms of location on the attractor.
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The score generated by an excerpt of music created using the Lorenz equations can be
found in Figure 8. As one can see, there are general patterns which are almost repeated
in the melody – that is, they are similar, but not exact replicas. In addition, even where a
pattern is repeated (for instance, in line 10, the pattern d4. e 8 d4. e 8 is repeated twice),
the chord changes, providing a different feel to the same notes.

The score generated by an excerpt of music created using the Henon equations can be
found in Figure 7. As one can see, the Henon map jumps around in different octaves. This is
indicative of the erratic behavior of the Henon map in that, if one were to look at the actual
data used to recreate the attractor (Figure 3a) as well as to create the music, one would see
very erratic movement between positive and negative, high decimals to low decimals, etc.
This is very plainly seen and heard in the musical score and the music respectively.

The score generated by an excerpt of music created using the Chua circuit can be found
in Figure 6. As one can see, the Chua circuit suddenly jumps from one loop to the other as
visualized in the attractor (Figure 4) and in the first line of the score. There are many more
switches as can be seen by looking for changes or jumps in the octave. This happens many,
many times throughout the piece and can easily be heard, which is another testament to the
utility of music in interpreting chaotic behavior in a nonlinear dynamic system such as the
Chua circuit.

Figure 1: Bifurcation Diagram of the Henon map

5 Discussion

The fact that chaos can be audibly rendered means that one can catch slight differences
between two attractors – even if one cannot see the difference. In addition, it is easier to listen
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Figure 2: Chua’s circuit

(a) Henon map attractor (b) Logistic map attractor

Figure 3: Attractors

11



Figure 4: Chua’s Attractor

Figure 5: The Chua circuit built at the Naval Sea Systems Command in Philadelphia
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Chua circuit composition excerpt
Last 23 lines

Chiraag Nataraj
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Figure 6: The score from an excerpt of the music generated by Chua’s circuit
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Henon map composition excerpt
First 20 lines

Chiraag Nataraj
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Figure 7: The score from an excerpt of the music generated by the Henon equations
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Figure 8: The score from an excerpt of the music generated by the Lorenz equations
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for a difference while, say, operating machinery, than it is to look for a change. The current
work is very different from the work of the other people who have worked on this in that this
work has brought the element of jazz and chord progressions into the music, which no one
else has done. It has also brought in the idea of chord progressions, which, until now, had
not been done. The few people who have done this sort of work have not done anything to do
with jazz, scales, chords, etc. These features bring in a lot more variability and richness into
the music; moreover, it brings in added complexity that is absolutely necessary to interpret
the complex behavior of nonlinear dynamic systems.

6 Conclusion and Future Plans

In conclusion, this project provides an excellent means of understanding nonlinear dy-
namic systems through music. After extensive review of previous work in this area, it was
found that the nonlinearity of a system was used either to modify existing music, not provid-
ing a window into the complex dynamics of the system, or to generate simplistic music, again,
not completely representing the dynamics of the system. On the other hand, this project
enabled better interpretation of the underlying nonlinear mechanics of the system through
the creation of new music that was significantly more sophisticated than the previous work,
thus providing more details about the intricate dynamics.

Data acquisition from a Chua circuit was implemented using LabView software and the
data collected was parsed using Java. The created music also consisted of more advanced
concepts such as chord progressions and modes which are representative of the location of
points on the strange attractor, a pattern along which the data points in the chaotic system
will fall. The chord progression changes help immensely with interpreting chaos, as one can
hear the dissonance. Also, the music is created from a musician’s perspective in that the
chord progressions are modeled after a jazz concept, where musicians navigate in and out of
a scale during the course of a rendition.

A couple of questions still remain.

• Can one truly represent all of the intricacies of chaos using music? Significant work
needs to be done in order to answer this burning question.

• Could this also be an effective means of creating sophisticated, beautiful, and versatile
music autonomously? This project tried to partially accomplish this by staying within
a scale (C Major), but it is not sufficient just to stay within the scale because there can
be durational or octaval issues. Notes jumping too quickly jar the nerves, while really
slow music can bore the listener. This project also tried to ensure that there were not
too many fast or slow notes by keeping the longest duration a quarter dotted note.
However, this is still programming in what humans believe sounds good, whereas the
question is whether the computer can tell what sounds good and only play or otherwise
output only that music.

• Is it possible to explore application to Indian classical music which has been a passion
for me (both vocal and tabla)? Indian classical music emphasizes melody (raaga)
and rhythm as opposed to chords; my suspicion is that this would represent quite a
challenge.

18



A possible future goal for this project could be improving the aesthetic quality of the
music by adding a rhythm to make it even more musical while also giving the song a much
stronger beat. Also, more complex musical elements such as multiple melodies, staccato,
legato, tempo, etc could be implemented in order to facilitate interpretation of multiple
linked mutually dependent systems. If I were to start this project today, I would spend more
time planning the feature set and prioritizing them better.
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